
OPTIMIZING THE

RENDERING

TOOLCHAIN

WHAT YOU’D TEST IF IT DIDN’T TAKE SO

DAMN LONG, AND NON-OBVIOUS

IMPROVEMENTS

Image © CC BY-SA 2.0 ksyz @ flickr Presentation © CC BY-SA 4.0 by Paul Norman

WHO AM I?

• Paul Norman, OpenStreetMap Editor and Developer

• osm2pgsql, cgimap, ogr2osm, openstreetmap-carto, …

• Geospatial database consultant

• PostgreSQL + PostGIS

• Writing complicated geospatial queries efficiently

penorman@mac.com

http://www.paulnorman.ca/

@penorman

WEBMAP

BASICS

BASIC TERMS YOU NEED TO KNOW

TERMS: ZOOM

• What scale the map images are at

• Ranges from 0 to 19 typically

z0 z12 z18

• A 256x256 pixel image as

part of a larger online web

map

• URL is in a zoom/x/y

scheme to indicate where

in the world it represents

TERMS: TILE

• Rectangle that encloses a

feature

TERMS: BOUNDING

BOX

TERMS

• Meta-tile

• Multiple tiles rendered at once for efficiency

• Presumed to be 8x8 (64 tiles, 2048x2048 pixels)

• One big render rather than 64 smaller renders

OPENSTREETMAP

WHO ARE WE ANYWAYS?

OPENSTREETMAP

• Map of the world anyone can
edit

• Crowd-sourced, like Wikipedia

• Large database of geodata

• PostgreSQL is default database
of choice in the community

• PostGIS + handling lots of data

SERVERS: MAIN API

• Main API

• 3.5TB Postgres DB

• OLTP usage, 1k transactions/second, 50 connections to DB

• Replicated to two slaves used for some read-only queries

• Edits result in updates on this DB

• Changes are published every minute in an OSM-specific XML

format (“minutely diffs”)

• 6 application servers in front of it running rails code for most

functions and C++ code for performance-critical API calls

• 20 600GB 15k RPM drives, 2 600GB SSDs for LSI

CacheCade (+ spare and OS drives)

• 256GB RAM

SERVERS: GEOCODING

(NOMINATIM)

• Forward and reverse geocoding

• 1.1TB Postgres + PostGIS DB

• Constant volume of updates to stay in sync via
minutely diffs

• 15-80 Postgres connections

• API requests result in reads only

• Database could be recreated from published
data

• 2 512GB SSDs

• 2 300GB 10k RPM RAID1, 2 2TB RAID 1OS
drives

SERVERS: RENDERING

• Rendered tiles for tile.openstreetmap.org

• 350GB Postgres + PostGIS DB
• 65GB working set

• 20 MT/s render capacity

• 2k trans/s

• Two servers in different data centers

• 48GB and 80GB ram

• SSD + fast drives for image cache

• CDN in front of servers

POSTGIS

BASICS

WORKING WITH SPATIAL DATA IN 2 MINUTES

WHAT IS POSTGIS?

• Extension for storing and handling
spatial data in Postgres

• CREATE EXTENSION PostGIS;
• Similar to ESRI SDE or Oracle’s

Spatial Extension

• Handles vector and raster data

• For this talk

• Four relevant data types

• One relevant operator

TYPES

• POINT

• A point, with coordinates

• LINESTRING

• A series of points forming a line

• POLYGON

• An outer closed line with potentially multiple
closed lines for holes

• MULTIPOLYGON

• Multiple polygons forming disjoint areas

OPERATORS

• A && B

• Returns true if the
bounding boxes of A and
B intersect

• Can make use of GiST
indexes on A or B

PAST WORK

http://www.geofabrik.de/media/2010-07-10-rendering-toolchain-performance.pdf

PAST WORK

http://www.remote.org/frederik/tmp/ramm-osm2pgsql-sotm-2012.pdf

HOW ALMOST

EVERYONE DOES IT

Planet dump

30 GB binary

Diffs

40MB/day

XML

osm2pgsql

PostgreSQL

PostGIS

.style files

carto

Mapnik XML

Mapnik

renderd

tirex

etc...

CartoCSS

files

Cached

tiles

Caching Users

apache mod_tile

INITIAL IMPORT

Diffs

40MB/day

XML

carto

Mapnik XML

Mapnik

renderd

tirex

etc...

Planet dump

30 GB binary
osm2pgsql

PostgreSQL

PostGIS

.style files

CartoCSS

files

Cached

tiles

Caching Users

apache mod_tile

UPDATES

Planet dump

30 GB binary

Diffs

40MB/day

XML

osm2pgsql

PostgreSQL

PostGIS

.style files

carto

Mapnik XML

Mapnik

renderd

tirex

etc...

CartoCSS

files

Cached

tiles

Caching Users

apache mod_tile

TILES: CACHE MISS

Planet dump

30 GB binary

Diffs

40MB/day

XML

osm2pgsql

PostgreSQL

PostGIS

.style files

carto

Mapnik XML

Mapnik

renderd

tirex

etc...

CartoCSS

files

Cached

tiles

Caching Users

apache mod_tile

SIZING

YOUR

SERVER

AVOID BUYING WHAT YOU DON’T NEED

FIRST, DEFINE

REQUIREMENTS

• If you don’t know your
requirements, then how will
you make sure your tile
server meets them?

• Adjusting some of your
requirements can speed up
your server drastically

AREA

Figure out what area
you want to render

• Smaller areas need less
drive space, better ram
caching, quicker imports

Pick the smallest
geofabrik extract that
covers that area

• Allows their daily diffs for
updates

• Possible to extract your
own data, but more work

UPDATES

• OpenStreetMap provides “minutely diffs” which let you

keep your server in sync up to the minute

• You can update every minute, but should you?

• Minutely is less efficient than batching updates into

chunks

• Suggested times

• 5 minutes

• 1 hour

• 1 day

• 1 week

HOW OLD MAPS CAN

YOU SERVE?

• More aggressive caching
means older maps but
much less load

• Tiles in the browser
cache don’t need to be
requested from the server
at all

LOAD

• Measured in tiles/second or similar

• tile.openstreetmap.org has 5000 peak and 3250
average tiles/second, double traffic a year ago

• Relates to site hits, but how depends how big
the maps on your page are and how much
panning they do

• One openstreetmap.org screen has about 30
tiles

• Your users will pan around looking at the map
less than ours!

• Check tile., render., orm., and yevaud. on
http://munin.openstreetmap.org/

CACHE HIT RATES

• Depends on how the users view
the map

• If all users are viewing the same
areas, higher cache hit rate

• If users view random places,
lower cache hit rate

• How do you predict? Don’t know

HARDWARE

• Less expensive than you might think

• Requires a balance

• Requires drive speed, not capacity

• Don’t buy/rent a server with fast CPU and big slow drives
and nothing else!

• For a full planet high performance server, ideally the
database on a SSD, 24GB or more RAM, lots of CPU cores.
Tile cache can be on HDDs

• wiki.osm.org/Servers has our specifications

• Easy to run multiple servers in parallel, but generally you
won’t have the load to need it

• tile.openstreetmap.org uses only two rendering servers

OPTIMIZATION

Optimizing rendering

≈

Optimizing PostgreSQL

UPDATES

• Updates come from planet.osm.org in minutely,
hourly or daily increments

• Use osmosis to fetch updates, group them together
and give them to osm2pgsql to apply to the database

• Update less often for less total time spent updating

• Update in low-traffic hours for less impact

• Might not work if you’re worldwide

• Geofabrik makes daily update files for their extracts

• Look for raw directory index then look for updates

LESS UPDATES

From 2012 presentation

DO YOU NEED TO

UPDATE?

• Instead of updates, you can re-import the
database

• Imports for small areas are fast

• Imports where you don’t need the update
tables are faster

• Takes less disk space without update tables

• No need to re-CLUSTER (more on this later)

• Not updating only worth it for small areas or
if you’re only updating weekly or monthly

POSTGRESQL

QUERIES

• Lots of queries like this

SELECT *
 FROM
 (SELECT way, highway FROM planet_osm_line
 WHERE highway IN ('motorway', 'trunk')
 ORDER BY z_order
 AS major_roads
 WHERE way && !bbox!;

• PostgreSQL will

• Index scan planet_osm_line based on !bbox!

• Filter out non-roads

• Sort the result

SPEED IT UP: INDEX

SCANNING

• Index scanning planet_osm_line for rows that match way
&& !bbox!

• Default index is "planet_osm_line_index" gist (way)

• This index covers all lines, not just roads

• Wouldn’t it be handy to have an index that just covers
roads

• Smaller index

• Only returns rows so less to filter out

• Partial indexes!

CREATE INDEX ON planet_osm_line USING gist (way)
 WHERE highway IS NOT NULL;

• This index only contains highways

SPEED IT UP:

FILTERING

• Filtering out rows for highway IN
('motorway', 'trunk')

• Partial geometry indexes help hugely

• Btree partial indexes might help, but not as
much as partial geometry indexes in my
testing

CREATE INDEX ON (highway)
 WHERE highway IS NOT NULL;

• Make sure to match indexes to queries

• One other type of filtering… geometry && re-
checks

BITMAP INDEX SCANS

AND FILTERING

• When scanning an index, PostgreSQL builds a
list of locations where data matching the
query is

• At low zooms this list can get very large, so it
has to use a bitmap index scan instead

• This technique uses less memory, but returns
unnecessary rows

• Governed by work_mem setting

• Default PostgreSQL setting is far too low for
rendering

• Try 32-64 MB

SPEED IT UP:

SORTING

• Give PostgreSQL enough
work_mem to sort in memory
instead of slow disk sorts

• 32-64 MB

• Total of 20-40% speed gain
with appropriate work_mem

CLUSTERING

• Clustering places geographically nearby
points

• Don’t cluster with a gist index, use
ST_GeoHash.

• Do not rely on osm2pgsql to cluster tables,
released versions do not do this right

CREATE INDEX tmp_line
 ON (ST_GeoHash(ST_Transform(way,4326)));
CLUSTER planet_osm_line USING tmp_line;
DROP INDEX tmp_line;
• ~14% faster with gist (way) clustering

• ~25% faster with ST_GeoHash clustering

CLUSTERING

• Untested technique recently suggested

CREATE INDEX tmp_line
 ON (ST_GeoHash(
 ST_Transform(ST_Envelope(way),4326)
));
CLUSTER planet_osm_line USING tmp_line;
DROP INDEX tmp_line;

• Saves transforming a complicated geometry when all

that’s needed is a bounding box

DB MAINTENANCE

• Database maintenance is an essential task

• Statistics

• Increase default_statistics_target to 1000 or 10000

• Run ANALYZE periodically

• Table bloat

• autovacuum will limit this

• Make autovacuum more aggressive! Adjust

autovacuum_vacuum_scale_factor to about 0.05,

autovacuum_analyze_scale_factor to about half that

DB MAINTENANCE

• Index bloat

• autovacuum does not limit index bloat

• MUST reindex or rewrite the table

• Reindexing can be done concurrently, but faster if you can
stop the server and reindex all tables in parallel

• ~80 minutes in parallel on my benchmark server

• Consider if you need to reindex just the rendering tables or
also the update tables

• Update tables take longer to reindex, but you can stop
updates and reindex

• CLUSTER degredation

• As the tables are updated, they’re no longer in the nice
clustered order

• Recreate the ST_GeoHash index and re-CLUSTER

• Rewrites the indexes too, so eliminates index bloat

WHEN TO REINDEX

AND CLUSTER

• Postgres provides tools to examine table/index bloat

• Pgstattuple extension

• Strong correlation between table correlation and reduced

rendering speed

SELECT CORR(page,geohash)
 FROM (
 SELECT (
 ctid::text::point)[0] AS page,
 rank() OVER (
 ORDER BY St_GeoHash(st_transform(way,4326))
) AS geohash
 FROM planet_osm_roads
) AS s;

UPCOMING RESULTS

• More detailed relationship between
correlation and slowdown to better plan
when clustering is required

• Bulk rendering strategies

• Pgbouncer?

• Hstore and slimmer styles

• Blog posts to paulnorman.ca

• Results cross-posted to tile-serving@
mailing list: https://list.osm.org/listinfo/tile-
serving

HOW DOES A RENDERING

SERVER WORK?

Planet dump

30 GB binary

.osm.pbf

osm2pgsql --create

--slim

points

lines

polygons

roads

ways

relations

nodes

Flat

nodes file

osm2pgsql --append

--slim

Diffs

40MB/day XML

.osc .gz

