What you'd test if it didn’t take so damn long,
and non-obvious improvements

Image © CC BY-SA 2.0 ksyz @ flickr Presentation © CC BY-SA 4.0 by Paul Norman

Past work

Optimising the
Mapnik Rendering
Toolchain

Frederik Ramm
Geofabrik GmbH

or: Things you could have found
out yourself if only it didn't
take so damn long to try them:

AN f@ Optimising the Mapnik Toolchain @ SOTM 2010
v Y /4

stopwatch CC-BY maedli @ flickr

http://www.geofabrik.de/media/2010-07-10-rendering-toolchain-performance.pdf

Past work

o
i
o
o
=
=
o
o
®
=
@
K=
=
8
=
=
c
o
©
=
]
£
-
(=2}
=
£
E
.
(=R
o

Optimising the
Mapnik Rendering
Toolchain

2.0

Frederik Ramm
frederik@remote.org

k, /ff stopwatch CC-BY maedli @ flickr

http://www.remote.org/frederik/tmp/ramm-osm2pgsql-sotm-2012.pdf

How almost everyone
‘does it

Planet d_ump osm2pgsq|
30 GB binary PostgreSQL Cached
PostGIS tiles

Diffs .style files

40MB/day

X renderd

Mapnik tirex
Mapnik XML etc...

CartoCSS
IS apache mod_tile

Caching

~osm2pgsq|

Planet d_ump osm2pgsq|
30 GB binary PostgreSQL Cached

tiles

BINES

OuEley renderd

tirex
Mapnik XML etc...

=== = - e - - ———-—

CartoCSS
IS apache mod_tile

Caching

stylesheets

Planet dump
30 GB binary

Diffs
40MB/day

CartoCSS
files

osm2pgsq|

Style files

PostgreSQL Cached
PostGIS tiles

renderd
Mapnik tirex
etc...

apache mod tile

Caching

Rendering server

Planet dump 0sm2pgsq

30 GB binary PostgreSQL Cached
PostGIS tiles

Diffs .style files

40MB/day

X renderd

tirex
etc...

CartoCSS
IS apache mod_tile

== e e e ===y

_Initial import

Planet dump
30 GB binary

Diffs
40MB/day

CartoCSS
files

osm2pgsq|

Mapnik XML

Cached
tiles

renderd
tirex
etc...

apache mod tile

Caching

=== = - e - - ———-—

Updates

Planet dump

osm2pgsdql
30 GB binary MR

Diffs
40MB/day

Mapnik XML

CartoCSS
files

PostgreSQL Cached
tiles

renderd
tirex
etc...

apache mod tile

Caching

Tiles: Cache hit

Planet dump osm2pgsq

30 GB binary PostgreSQL Cached

PostGIS tiles

Diffs .Style files 85-94% cache hi

40MB/day
X

renderd
tirex
etc...

CartoCSS [
IS apache mod_tile

Caching

Lo ee - - >Wcache _ _ _ __

Tiles: cache miss

Planet dump 0sm2pgsq

30 GB binary PostgreSQL Cached
PostGIS tiles

Diffs .style files

40MB/day

X renderd

tirex
etc...

CartoCSS
IS apache mod_tile

First, define
requirements

* If you don’t know your
requirements, then how will
you make sure your tile
server meets them?

* Adjusting some of your
requirements can speed up
your server drastically

Area

Figure out what area
you want to render

* Smaller areas need less
drive space, better ram
caching, quicker
iImports

Pick the smallest
geofabrik extract that
covers that area

* Allows their dalily diffs for
updates

* Possible to extract your
own data, but more
work

Updates

* OpenStreetMap provides “minutely diffs” which let you
keep your server in sync up to the minute

* You can update every minute, but should you?

 Minutely is less efficient than batching updates into
chunks

* Suggested times
* 5 minutes
* 1 hour
 1day
1 week

How old maps can you
serve?

* More aggressive caching
means older maps but
much less load

* Tiles In the browser
cache don’t need to be
requested from the
server at all

Load

e Measured in tiles/second or similar

* tile.openstreetmap.org has 5000 peak and 3250
average tiles/second, double traffic a year ago

* Relates to site hits, but how depends how big
the maps on your page are and how much
panning they do

* One openstreetmap.org screen has about 30
tiles

* Your users will pan around looking at the map
less than ours!

* Check tile. render., orm., and yevaud. on
http://munin.openstreetmap.org/

Cache hit rates

* Depends on how the users view
the map

* If all users are viewing the same
areas, higher cache hit rate

* If users view random places,
lower cache hit rate

* How do you predict? Don’t know

Hardware

* Less expensive than you might think
* Requires a balance
* Requires drive speed, not capacity

* Don’t buyl/rent a server with fast CPU and big slow drives
and nothing else!

* For a full planet high performance server, ideally the
database on a SSD, 24GB or more RAM, lots of CPU
cores. Tile cache can be on HDDs

* wiki.osm.org/Servers has our specifications

* [Easy to run multiple servers in parallel, but generally you
won’t have the load to need it

* tile.openstreetmap.org uses only two rendering
servers

Optimization

Optimizing rendering

-
—

Optimizing PostgreSQL

Updates

* Updates come from planet.osm.org in minutely,
hourly or daily increments

* Use osmosis to fetch updates, group them together
and give them to osm2pgsql to apply to the
database

* Update less often for less total time spent updating

* Update in low-traffic hours for less impact
* Might not work if you're worldwide

* Geofabrik makes daily update files for their extracts
* Look for raw directory index then look for updates

Less updates

Time for One Day's Worth of Diff Imports

4 hours

2 hours

0 10 20 30 10 50 60
number of minutes in batch

From 2012 presentation

Do you need to update?

Instead of updates, you can re-import the
database

Imports for small areas are fast

Imports where you don’t need the update
tables are faster

Takes less disk space without update tables
No need to re-CLUSTER (more on this later)

Not updating only worth it for small areas or
If you’re only updating weekly or monthly

PostgreSQL queries

* Lots of queries like this

SELECT *
FROM
(SELECT way, highway FROM planet _osm line
WHERE highway IN ('motorway', 'trunk')
ORDER BY z order
AS major_roads
WHERE way && !bbox!;

* PostgreSQL will
* Index scan planet osm line basedon !bbox!
* Filter out non-roads
* Sort the result

speed it up: Index

scanning

* Index scanning planet_osm_line for rows that match way
&& !bbox!

* Defaultindexis "planet _osm line index" gist
(way)

e This index covers all lines, not just roads

Wouldn’t it be handy to have an index that just covers
roads

* Smaller index
* Only returns rows so less to filter out
Partial indexes!
CREATE INDEX ON planet_osm_line USING gist (way)
WHERE highway IS NOT NULL;
* This index only contains highways

Time spent rendering zoom (seconds)

1000

Q00

200

Speed changes from partial water area and partial not building indexes

Time % Decrease
] Mormal

\ [— Partial water index
— — Partial not building index
Ui ———— Both partials

713 z14 z15 z16 17 z18

25.0%

20.0%

15.0%

10.0%

5.0%

- 0.0%

Speed it up: Filtering

Filtering out rows for highway IN
('motorway', 'trunk')

Partial geometry indexes help hugely

Btree partial indexes might help, but not as
much as partial geometry indexes in my
testing

CREATE INDEX ON (highway)
WHERE highway IS NOT NULL;

Make sure to match indexes to queries

One other type of filtering... geometry &&
re-checks

Bitmap index scans and
filtering

* When scanning an index, PostgreSQL builds a
list of locations where data matching the
query is

At low zooms this list can get very large, so it
has to use a bitmap index scan instead

* This technique uses less memory, but returns
unnecessary rows

* Governed by work_mem setting

* Default PostgreSQL setting is far too low for
rendering

* Try 32-64 MB

Speed it up: sorting

* Give PostgreSQL enough
work mem to sort in
memory instead of slow
disk sorts

* 32-64 MB

* Total of 20-40% speed gain
with appropriate work mem

Clustering

* Clustering places geographically nearby points

* Don’t cluster with a gist index, use
ST_GeoHash.

* Do not rely on osm2pgsql to cluster tables,
released versions do not do this right

CRgﬁTE INDEX tmp_line
(ST_GeoHash(ST_Transform(way,4326));
CLUSTER planet osm line USING tmp 11ne,
DROP INDEX tmp line;

* ~14% faster with gist (way) clustering
« ~25% faster with ST_GeoHash clustering

DB maintenance

 Database maintenance is an essential task
e Statistics
* Increase default statistics target to 1000 or

10000
* Run ANALYZE periodically
* Table bloat

e autovacuum will limit this

* Make autovacuum more aggressive! Adjust
autovacuum vacuum scale factor to about
0.05, autovacuum analyze scale factorto
about half

DB maintenance

* |ndex bloat

* autovacuum does not limit index bloat
* MUST reindex or rewrite the table

* Reindexing can be done concurrently, but faster if you
can stop the server and reindex all tables in parallel

* ~80 minutes in parallel on my benchmark server

* Consider if you need to reindex just the rendering tables
or also the update tables

* Update tables take longer to reindex, but you can
stop updates and reindex

* CLUSTER degredation

* As the tables are updated, they’re no longer in the nice
clustered order

* Recreate the ST_GeoHash index and re-CLUSTER
* Rewrites the indexes too, so eliminates index bloat

When to reindex and
cluster

* Postgres provides tools to examine
table/index bloat

— pgstattuple extension

* Strong correlation between table correlation
and reduced rendering speed

SELECT CORR(page,geohash)

FROM (SELECT (ctid::text::point)[0] AS page,

rank() OVER (ORDER BY
st geohash(st transform(way,4326))) AS geohash

FROM planet osm roads) AS s;

Upcoming results

* More detailed relationship between
correlation and slowdown to better plan
when clustering is required

* Bulk rendering strategies

* Pgbouncer?

* Hstore and slimmer styles

* Blog posts to paulnorman.ca

* Results cross-posted to tile-serving@
mailing list:
https:/llist.osm.orgllistinfo/tile-serving

Upcoming osm2pgsq|
features

* Threaded branch

* Scaling of more parts of the
iImport across multiple cores

* Fixes clustering!
* Partitioning
* Allows partitioned tables

* Better tools for dump and reload
updates

