
Optimizing the
rendering toolchain

What you’d test if it didn’t take so damn long,
and non-obvious improvements

Image © CC BY-SA 2.0 ksyz @ flickr Presentation © CC BY-SA 4.0 by Paul Norman

Past work

http://www.geofabrik.de/media/2010-07-10-rendering-toolchain-performance.pdf

Past work

http://www.remote.org/frederik/tmp/ramm-osm2pgsql-sotm-2012.pdf

How almost everyone
does it

Planet dump
30 GB binary

Diffs
40MB/day

XML

osm2pgsql
PostgreSQL

PostGIS

.style files

carto

Mapnik XML

Mapnik
renderd

tirex
etc...

CartoCSS
files

Cached
tiles

CachingUsers

apache mod_tile

osm2pgsql
Planet dump
30 GB binary

Diffs
40MB/day

XML

osm2pgsql
PostgreSQL

PostGIS

.style files

carto

Mapnik XML

Mapnik
renderd

tirex
etc...

CartoCSS
files

Cached
tiles

CachingUsers

apache mod_tile

stylesheets
Planet dump
30 GB binary

Diffs
40MB/day

XML

osm2pgsql
PostgreSQL

PostGIS

.style files

carto

Mapnik XML

Mapnik
renderd

tirex
etc...

CartoCSS
files

Cached
tiles

CachingUsers

apache mod_tile

Rendering server
Planet dump
30 GB binary

Diffs
40MB/day

XML

osm2pgsql
PostgreSQL

PostGIS

.style files

carto

Mapnik XML

Mapnik
renderd

tirex
etc...

CartoCSS
files

Cached
tiles

CachingUsers

apache mod_tile

Initial import

Diffs
40MB/day

XML

carto

Mapnik XML

Mapnik
renderd

tirex
etc...

Planet dump
30 GB binary

osm2pgsql
PostgreSQL

PostGIS

.style files

CartoCSS
files

Cached
tiles

CachingUsers

apache mod_tile

Updates
Planet dump
30 GB binary

Diffs
40MB/day

XML

osm2pgsql
PostgreSQL

PostGIS

.style files

carto

Mapnik XML

Mapnik
renderd

tirex
etc...

CartoCSS
files

Cached
tiles

CachingUsers

apache mod_tile

Tiles: Cache hit
Planet dump
30 GB binary

Diffs
40MB/day

XML

osm2pgsql
PostgreSQL

PostGIS

.style files

carto

Mapnik XML

CartoCSS
files

Cached
tiles

CachingUsers

Mapnik
renderd

tirex
etc...

apache mod_tile

50% cache
hit

85-94% cache hit

Tiles: cache miss
Planet dump
30 GB binary

Diffs
40MB/day

XML

osm2pgsql
PostgreSQL

PostGIS

.style files

carto

Mapnik XML

Mapnik
renderd

tirex
etc...

CartoCSS
files

Cached
tiles

CachingUsers

apache mod_tile

First, define
requirements

• If you don’t know your
requirements, then how will
you make sure your tile
server meets them?

• Adjusting some of your
requirements can speed up
your server drastically

Area
Figure out what area
you want to render

• Smaller areas need less
drive space, better ram
caching, quicker
imports

Pick the smallest
geofabrik extract that
covers that area

• Allows their daily diffs for
updates

• Possible to extract your
own data, but more
work

Updates
• OpenStreetMap provides “minutely diffs” which let you

keep your server in sync up to the minute

• You can update every minute, but should you?

• Minutely is less efficient than batching updates into
chunks

• Suggested times

• 5 minutes
• 1 hour
• 1 day
• 1 week

How old maps can you
serve?

• More aggressive caching
means older maps but
much less load

• Tiles in the browser
cache don’t need to be
requested from the
server at all

Load
• Measured in tiles/second or similar
• tile.openstreetmap.org has 5000 peak and 3250

average tiles/second, double traffic a year ago
• Relates to site hits, but how depends how big

the maps on your page are and how much
panning they do

• One openstreetmap.org screen has about 30
tiles

• Your users will pan around looking at the map
less than ours!

• Check tile., render., orm., and yevaud. on
http://munin.openstreetmap.org/

Cache hit rates

• Depends on how the users view
the map

• If all users are viewing the same
areas, higher cache hit rate

• If users view random places,
lower cache hit rate

• How do you predict? Don’t know

Hardware
• Less expensive than you might think
• Requires a balance
• Requires drive speed, not capacity
• Don’t buy/rent a server with fast CPU and big slow drives

and nothing else!
• For a full planet high performance server, ideally the

database on a SSD, 24GB or more RAM, lots of CPU
cores. Tile cache can be on HDDs

• wiki.osm.org/Servers has our specifications
• Easy to run multiple servers in parallel, but generally you

won’t have the load to need it
• tile.openstreetmap.org uses only two rendering

servers

Optimization

Optimizing rendering

≈

Optimizing PostgreSQL

Updates
• Updates come from planet.osm.org in minutely,

hourly or daily increments
• Use osmosis to fetch updates, group them together

and give them to osm2pgsql to apply to the
database

• Update less often for less total time spent updating
• Update in low-traffic hours for less impact

• Might not work if you’re worldwide
• Geofabrik makes daily update files for their extracts

• Look for raw directory index then look for updates

Less updates

From 2012 presentation

Do you need to update?

• Instead of updates, you can re-import the
database

• Imports for small areas are fast
• Imports where you don’t need the update

tables are faster
• Takes less disk space without update tables
• No need to re-CLUSTER (more on this later)
• Not updating only worth it for small areas or

if you’re only updating weekly or monthly

PostgreSQL queries
• Lots of queries like this
SELECT *
 FROM
 (SELECT way, highway FROM planet_osm_line
 WHERE highway IN ('motorway', 'trunk')
 ORDER BY z_order
 AS major_roads
 WHERE way && !bbox!;
• PostgreSQL will

• Index scan planet_osm_line based on !bbox!
• Filter out non-roads
• Sort the result

speed it up: Index
scanning
• Index scanning planet_osm_line for rows that match way

&& !bbox!
• Default index is "planet_osm_line_index" gist

(way)
• This index covers all lines, not just roads

• Wouldn’t it be handy to have an index that just covers
roads

• Smaller index
• Only returns rows so less to filter out

• Partial indexes!

CREATE INDEX ON planet_osm_line USING gist (way)
 WHERE highway IS NOT NULL;
• This index only contains highways

Speed it up: Filtering
• Filtering out rows for highway IN

('motorway', 'trunk')
• Partial geometry indexes help hugely
• Btree partial indexes might help, but not as

much as partial geometry indexes in my
testing
CREATE INDEX ON (highway)
 WHERE highway IS NOT NULL;

• Make sure to match indexes to queries
• One other type of filtering… geometry &&

re-checks

Bitmap index scans and
filtering
• When scanning an index, PostgreSQL builds a

list of locations where data matching the
query is

• At low zooms this list can get very large, so it
has to use a bitmap index scan instead

• This technique uses less memory, but returns
unnecessary rows

• Governed by work_mem setting
• Default PostgreSQL setting is far too low for

rendering
• Try 32-64 MB

Speed it up: sorting

• Give PostgreSQL enough
work_mem to sort in
memory instead of slow
disk sorts

• 32-64 MB
• Total of 20-40% speed gain

with appropriate work_mem

Clustering
• Clustering places geographically nearby points
• Don’t cluster with a gist index, use

ST_GeoHash.
• Do not rely on osm2pgsql to cluster tables,

released versions do not do this right
CREATE INDEX tmp_line
 ON
(ST_GeoHash(ST_Transform(way,4326));
CLUSTER planet_osm_line USING tmp_line;
DROP INDEX tmp_line;
• ~14% faster with gist (way) clustering
• ~25% faster with ST_GeoHash clustering

DB maintenance
• Database maintenance is an essential task

• Statistics

• Increase default_statistics_target to 1000 or
10000

• Run ANALYZE periodically
• Table bloat

• autovacuum will limit this
• Make autovacuum more aggressive! Adjust

autovacuum_vacuum_scale_factor to about
0.05, autovacuum_analyze_scale_factor to
about half

DB maintenance
• Index bloat

• autovacuum does not limit index bloat
• MUST reindex or rewrite the table
• Reindexing can be done concurrently, but faster if you

can stop the server and reindex all tables in parallel
• ~80 minutes in parallel on my benchmark server
• Consider if you need to reindex just the rendering tables

or also the update tables
• Update tables take longer to reindex, but you can

stop updates and reindex
• CLUSTER degredation

• As the tables are updated, they’re no longer in the nice
clustered order

• Recreate the ST_GeoHash index and re-CLUSTER
• Rewrites the indexes too, so eliminates index bloat

When to reindex and
cluster

● Postgres provides tools to examine
table/index bloat
– pgstattuple extension

● Strong correlation between table correlation
and reduced rendering speed

SELECT CORR(page,geohash)

FROM (SELECT (ctid::text::point)[0] AS page,

rank() OVER (ORDER BY
st_geohash(st_transform(way,4326))) AS geohash

FROM planet_osm_roads) AS s;

Upcoming results
• More detailed relationship between

correlation and slowdown to better plan
when clustering is required

• Bulk rendering strategies
• Pgbouncer?
• Hstore and slimmer styles
• Blog posts to paulnorman.ca
• Results cross-posted to tile-serving@

mailing list:
https://list.osm.org/listinfo/tile-serving

Upcoming osm2pgsql
features

• Threaded branch
• Scaling of more parts of the

import across multiple cores
• Fixes clustering!

• Partitioning
• Allows partitioned tables

• Better tools for dump and reload
updates

